Assessment of Retinal Vascular Geometry in Diabetic Retinopathy and its Predictive value in Disease Progression

Maged Habib
Consultant Ophthalmologist
Sunderland Eye Infirmary
United Kingdom

ARVO Egypt 2014

Diabetic Retinopathy – What we Know

• International Diabetes Federation: 246 million NOW.

• 35% of diabetics suffer with DR (93 million)
• 28 million with vision-threatening DR
• 7% with PDR (17 million)

• 3 identifiable risk factors: ↑ Glucose, ↑ BP, ↑ Cholesterol
Diabetic Retinopathy – What we Know

• In UK: prevalence (4.0 – 5.8%)
 3.2 million............(10% NHS budget)

• Middle East and North African region: highest prevalence of DM (10.9%)
 Egypt
 • 42% of diabetics suffer with end-stage DR
 • 5% classified as legally blind

Diabetic Retinopathy – What we Know

• Natural History of DM and its complications
• Features and classification of DR
• Prediction models for PDR

 - DRS
 - DRV5
 - ETDRS
 - DCCT
 - UKPDS, WESDR......and lots more
Diabetic Retinopathy
Unresolved problems

In patients with severe NPDR
 - 52% risk of developing PDR
 - 60% risk of developing high-risk PDR in 5 years

• Mismatch between severity of NPDR & retinal ischaemia
 (Featureless retina)

• “Present strategies deal with end-organ response and do not capture early disease”
• “We address established products of damaged retinal vessels”
DR- Background Research

- Digital imaging technology and vascular analysis
- Quantitative assessment of retinal vascular calibre changes.
DR- Background Research

Vascular changes with
• Development of Diabetes
• Development of DR
• Progression of DR

Recent Research

• Recent interest in assessment of further architectural and geometrical changes in the retinal vascular network

• Altered RVG
 Age
 Low birth weight
 peripheral vascular disease
 Hypertension
 Incident IHD & Stroke
 Cognitive disturbances
Purpose of the Study

• To evaluate RVG changes’ associations with increased severity of Diabetic Retinopathy

• Assess the predictive value of RVG changes as novel marker in identifying future progression to PDR

Retinal Vascular Geometry

Retinal geometrical features

• Absolute and Relative width measurements d_0, d_1, d_2
• Bifurcating angles $\theta, \theta_1, \theta_2$
• Area ratios and asymmetry ratios
 - Area ratio (β)
 - Junction exponent (x)
 - Asymmetry ratio (α)
Retinal Vascular Geometry

- Development of custom-designed computer-assisted semi-manual rectangle technique.

Manual measurement of retinal bifurcation features.
Al-Diri B, Hunter A, Steel D, Habib M.
Diabetic Cross-sectional Study

Diabetic groups: (EURODIAB IDDM complication study)

- No retinopathy
- Minimal NPDR
- Severe NPDR
- Proliferative retinopathy

- No statistical difference in demographic and clinical data
- A total of >1500 bifurcations analysed

Diabetic Cross-sectional Study

Results

Table 2 The distribution of geometrical measurements in the diabetic subgroups

<table>
<thead>
<tr>
<th>Retinal parameter</th>
<th>Overall data</th>
<th>No retinopathy group</th>
<th>Mild NPDR group</th>
<th>Severe NPDR group</th>
<th>PDR group</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± (STD)</td>
<td>(242 bifurcations)</td>
<td>(310 bifurcations)</td>
<td>(372 bifurcations)</td>
<td>(594 bifurcations)</td>
<td></td>
</tr>
<tr>
<td>Parent Vessel Diameter d_0 (pixels)</td>
<td>6.97 ± (1.61)*</td>
<td>8.39 ± (2.37)*</td>
<td>8.56 ± (2.30)*</td>
<td>8.98 ± (2.63)*</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Large Child Diameter d_1 (pixels)</td>
<td>6.17 ± (1.56)*</td>
<td>7.44 ± (2.30)*</td>
<td>7.56 ± (2.34)*</td>
<td>8.01 ± (2.53)*</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Smaller Child Diameter d_2 (pixels)</td>
<td>4.96 ± (1.04)*</td>
<td>5.47 ± (1.59)*</td>
<td>5.51 ± (1.44)*</td>
<td>5.76 ± (1.70)*</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Bifurcating Angle β (Degrees)</td>
<td>77.04 ± (15.66)*</td>
<td>79.85 ± (17.40)*</td>
<td>80.02 ± (17.81)*</td>
<td>83.23 ± (18.98)*</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Branching Angle α_1 (Degrees)</td>
<td>25.14 ± (14.18)*</td>
<td>25.12 ± (15.08)</td>
<td>25.62 ± (15.2)</td>
<td>25.05 ± (16.7)</td>
<td>0.941</td>
<td></td>
</tr>
<tr>
<td>Branching Angle α_2 (Degrees)</td>
<td>51.97 ± (19.33)*</td>
<td>55.01 ± (21.29)*</td>
<td>54.84 ± (21.74)*</td>
<td>58.57 ± (23.73)*</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>Junction Exponent γ</td>
<td>3.33 ± (3.34)*</td>
<td>3.64 ± (3.17)*</td>
<td>3.20 ± (3.13)*</td>
<td>3.55 ± (3.25)*</td>
<td>0.050</td>
<td></td>
</tr>
</tbody>
</table>

The p-value of ANOVA test is shown with the significant differences between the subgroups as determined by the LSD test. (Means that do not share a symbol are significantly different.)
Diabetic Cross-sectional Study

Results

- Advancing in severity of DR grade is associated with a gradual and steady increase in:
 - Vascular width of all vascular segments
 - Widening of bifurcating angle θ
 - Widening of branching angle θ_2
 - No change in branching angle θ_1

Table 3: The distribution of the arteriolar and venular geometrical measurements in the diabetic subgroups

<table>
<thead>
<tr>
<th>Retinal parameter</th>
<th>No retinopathy group (117 bifurcations)</th>
<th>Mild NPDR group (136 bifurcations)</th>
<th>Severe NPDR group (139 bifurcations)</th>
<th>PDR group (231 bifurcations)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artiolar data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent Vessel Diameter d_p (pixels)</td>
<td>6.47 ± (1.08)*</td>
<td>7.54 ± (1.68)*</td>
<td>7.58 ± (1.65)*</td>
<td>8.06 ± (1.84)*</td>
<td>0.000</td>
</tr>
<tr>
<td>Large Child Diameter d_L (pixels)</td>
<td>5.78 ± (1.12)*</td>
<td>6.65 ± (1.62)*</td>
<td>6.75 ± (1.66)*</td>
<td>7.23 ± (1.89)*</td>
<td>0.000</td>
</tr>
<tr>
<td>Smaller Child Diameter d_S (pixels)</td>
<td>4.60 ± (0.90)*</td>
<td>5.42 ± (1.37)*</td>
<td>5.41 ± (1.35)*</td>
<td>5.62 ± (1.43)*</td>
<td>0.000</td>
</tr>
<tr>
<td>Bifurcating Angle θ (Degrees)</td>
<td>76.13 ± (15.8)*</td>
<td>79.14 ± (17.9)*</td>
<td>78.78 ± (18.4)*</td>
<td>84.33 ± (18.6)*</td>
<td>0.000</td>
</tr>
<tr>
<td>Branching Angle θ_1 (Degrees)</td>
<td>25.77 ± (15.2)</td>
<td>27.32 ± (16.6)</td>
<td>28.33 ± (15.4)</td>
<td>27.44 ± (16.4)</td>
<td>0.560</td>
</tr>
<tr>
<td>Branching Angle θ_2 (Degrees)</td>
<td>50.36 ± (20.3)*</td>
<td>51.99 ± (21.3)*</td>
<td>50.45 ± (20.3)*</td>
<td>56.88 ± (22.9)*</td>
<td>0.014</td>
</tr>
<tr>
<td>Junction Exponent γ</td>
<td>2.70 ± (1.27)</td>
<td>3.30 ± (2.00)</td>
<td>3.92 ± (1.85)</td>
<td>4.15 ± (2.25)</td>
<td>0.161</td>
</tr>
</tbody>
</table>

Vascular data

<table>
<thead>
<tr>
<th>Retinal parameter</th>
<th>No retinopathy group (112 bifurcations)</th>
<th>Mild NPDR group (174 bifurcations)</th>
<th>Severe NPDR group (233 bifurcations)</th>
<th>PDR group (363 bifurcations)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Vessel Diameter d_p (pixels)</td>
<td>7.40 ± (1.87)*</td>
<td>9.94 ± (2.62)*</td>
<td>9.13 ± (2.56)*</td>
<td>6.65 ± (3.88)*</td>
<td>0.000</td>
</tr>
<tr>
<td>Large Child Diameter d_L (pixels)</td>
<td>6.51 ± (1.83)*</td>
<td>8.04 ± (2.55)*</td>
<td>8.05 ± (2.54)*</td>
<td>8.50 ± (2.79)*</td>
<td>0.000</td>
</tr>
<tr>
<td>Smaller Child Diameter d_S (pixels)</td>
<td>4.72 ± (1.68)*</td>
<td>5.51 ± (1.64)*</td>
<td>5.55 ± (1.47)*</td>
<td>5.82 ± (1.85)*</td>
<td>0.000</td>
</tr>
<tr>
<td>Bifurcating Angle θ (Degrees)</td>
<td>77.68 ± (15.1)</td>
<td>80.40 ± (16.9)</td>
<td>80.75 ± (17.4)</td>
<td>82.53 ± (19.0)</td>
<td>0.002</td>
</tr>
<tr>
<td>Branching Angle θ_1 (Degrees)</td>
<td>24.81 ± (12.9)</td>
<td>23.43 ± (14.9)</td>
<td>24.34 ± (15.0)</td>
<td>23.53 ± (16.8)</td>
<td>0.021</td>
</tr>
<tr>
<td>Branching Angle θ_2 (Degrees)</td>
<td>53.00 ± (17.9)</td>
<td>57.34 ± (20.8)</td>
<td>57.43 ± (22.1)</td>
<td>59.65 ± (23.7)</td>
<td>0.504</td>
</tr>
<tr>
<td>Junction Exponent γ</td>
<td>2.02 ± (0.26)</td>
<td>2.99 ± (0.88)</td>
<td>2.94 ± (0.89)</td>
<td>3.18 ± (1.46)</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Diabetic Cross-sectional Study

• Can we detect this on **INDIVIDUAL** level

• 2 Logistic regression models
 – Patients with NO Retinopathy VERSUS with Retinopathy
 – Patients with NPDR VERSUS patients with PDR

• Using:
 Mean Parent vessel Diameter + Mean deflection of small angle

Diabetic Cross-sectional Study

• **Model 1** [No Retinopathy vs Retinopathy]
 – 97.6% Sensitivity and 90% Specificity

• **Model 2** [NPDR vs PDR]
 – 63.2% Sensitivity and 72.3% Specificity
Diabetic Longitudinal Study

- Can we **Predict Progression** to PDR in the future

<table>
<thead>
<tr>
<th></th>
<th>Non-progressors (5)</th>
<th>Progressors (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline screening visit Images</td>
<td>No DR</td>
<td>No DR</td>
</tr>
<tr>
<td>Penultimate screening visit Images</td>
<td>No DR</td>
<td>No DR</td>
</tr>
<tr>
<td>Final screening visit Images</td>
<td>No DR</td>
<td>PDR</td>
</tr>
</tbody>
</table>
Diabetic Longitudinal Study

Non-progressors (5) Progressors (5)

Baseline Screening visit Images
No DR No DR

Penultimate screening visit Images
No DR No DR

Final screening visit Images
No DR PDR

Diabetic Longitudinal Study

<table>
<thead>
<tr>
<th>Retinal parameter</th>
<th>Baseline visit (No retinopathy)</th>
<th>Penultimate visit (No or minimal NPDR)</th>
<th>Final visit (PDR)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branching Angle θ_1 (Degrees)</td>
<td>26.47 ± (14.9)</td>
<td>28.49 ± (15.3)</td>
<td>26.26 ± (13.9)</td>
<td>0.501</td>
</tr>
<tr>
<td>Branching Angle θ_2 (Degrees)</td>
<td>51.28 ± (20.5)</td>
<td>49.98 ± (21.0)</td>
<td>54.07 ± (17.8)</td>
<td>0.334</td>
</tr>
<tr>
<td>Junction Exponent γ</td>
<td>3.102 ± (1.03)</td>
<td>3.01 ± (0.83)</td>
<td>3.104 ± (1.00)</td>
<td>0.721</td>
</tr>
</tbody>
</table>

Means and Standard deviations for the geometrical features in the progressors group baseline, penultimate and final visits for the overall data. P value for ANOVA test is shown.
Diabetic Longitudinal Study

Non-progressors (5) Progressors (5)

Baseline screening visit images
No DR → No DR

Penultimate screening visit images
No DR → No DR

Final screening visit images
No DR → PDR

Diabetic Longitudinal Study

Table 6 Results of binary logistic regression analysis

<table>
<thead>
<tr>
<th>Retinal parameter</th>
<th>Coeff</th>
<th>OR (95% CI)</th>
<th>p value</th>
<th>Coeff</th>
<th>OR (95% CI)</th>
<th>p value</th>
<th>Coeff</th>
<th>OR (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_0</td>
<td>-0.025</td>
<td>0.97 (0.84 - 1.14)</td>
<td>0.742</td>
<td>-0.145</td>
<td>0.86 (0.64 - 1.18)</td>
<td>0.352</td>
<td>-0.021</td>
<td>0.98 (0.81 - 1.18)</td>
<td>0.831</td>
</tr>
<tr>
<td>d_1</td>
<td>-0.007</td>
<td>0.99 (0.94 - 1.17)</td>
<td>0.934</td>
<td>-0.178</td>
<td>0.84 (0.61 - 1.16)</td>
<td>0.279</td>
<td>0.031</td>
<td>1.03 (0.84 - 1.27)</td>
<td>0.768</td>
</tr>
<tr>
<td>d_2</td>
<td>-0.318</td>
<td>0.73 (0.58 - 0.92)</td>
<td>0.007</td>
<td>-0.358</td>
<td>0.70 (0.49 - 1.00)</td>
<td>0.05</td>
<td>-0.301</td>
<td>0.74 (0.55 - 1.00)</td>
<td>0.05</td>
</tr>
<tr>
<td>θ_1</td>
<td>-0.001</td>
<td>1.00 (0.98 - 1.02)</td>
<td>0.844</td>
<td>-0.007</td>
<td>0.99 (0.97 - 1.02)</td>
<td>0.574</td>
<td>0.002</td>
<td>1.00 (0.98 - 1.03)</td>
<td>0.858</td>
</tr>
<tr>
<td>θ_2</td>
<td>0.011</td>
<td>1.01 (1.00 - 1.02)</td>
<td>0.154</td>
<td>0.014</td>
<td>1.01 (1.00 - 1.03)</td>
<td>0.123</td>
<td>0.005</td>
<td>1.01 (1.00 - 1.03)</td>
<td>0.652</td>
</tr>
<tr>
<td>χ</td>
<td>-0.118</td>
<td>0.83 (0.68 - 1.01)</td>
<td>0.069</td>
<td>-0.181</td>
<td>0.83 (0.66 - 1.00)</td>
<td>0.131</td>
<td>-0.099</td>
<td>0.90 (0.84 - 1.53)</td>
<td>0.709</td>
</tr>
</tbody>
</table>
Retinal Vascular Geometry in DR

- RVG can constitute a novel marker for progression of DR and establishment as well as prediction of PDR

At Baseline Before DR
Patients at risk can be identified

Novel bio-marker of development of PDR irrespective of other DR features

The Future

Development of fully automated Diabetic Retinopathy Screening
The Future

Development of fully automated Diabetic Retinopathy Screening

Acknowledgments

Mr David H Steel
Consultant Ophthalmologist
SEI - Sunderland

Professor Andrew Hunter
Head of department of computing and informatics
Vice Chancellor
Lincoln University

Dr Bashir Al-Diri
Lecturer of computer science and informatics
Lincoln University
"Knowledge comes from learning. Wisdom comes from living."

Anthony Douglas Williams

Thank You